An Isogeometric Bem for Exterior Potential-flow Problems around Lifting Bodies
نویسندگان
چکیده
In this paper, the Isogeometric Analysis (IGA) concept is combined with the Boundary Element Method (BEM) for solving the exterior Neumann problem associated with the steady lifting flow around a hydrofoil. The formulation of the problem is based on a Boundary Integral Equation for the associated velocity potential combined with the null-pressure jump Kutta condition at the trailing edge. The developed IsogeometricBEM is based on a parametric NURBS representation of the hydrofoil and employs the very same basis for representing the velocity potential. The Boundary Integral Equation is numerically solved by collocating at the Greville abscissas of the knot vector of the hydrofoil’s parametric representation. Numerical error analysis of the Isogeometric-BEM using h-refinement is performed and compared with classical low-order panel methods.
منابع مشابه
Numerical Simulation of Partial Cavitation over Axisymmetric Bodies: VOF Method vs. Potential Flow Theory
A computational study of partial cavitation over axisymmetric bodies is presented using two numerical methods. The first method is based on the VOF technique where transient 2D Navier-Stokes equations are solved along with an equation to track the cavity interface. Next, the steady boundary element method (BEM) based on potential flow theory is presented. The results of the two methods for a di...
متن کاملIsogeometric finite element analysis of time-harmonic exterior acoustic scattering problems
We present an isogeometric analysis of time-harmonic exterior acoustic problems. The infinite space is truncated by a fictitious boundary and (simple) absorbing boundary conditions are applied. The truncation error is included in the exact solution so that the reported error is an indicator of the performance of the isogeometric analysis, in particular of the related pollution error. Numerical ...
متن کاملNumerical Calculations of Ship Induced Waves
Nowadays, various numerical methods are developed to extend computational fluid dynamics in engineering applications. One of the most useful methods in free surface modeling is Boundary Element Method (BEM). BEM is used to model inviscid fluid flow such as flow around ships. BEM solutions employ surface mesh at all of the boundaries. In order to model the linear free surface, BEM can be modifie...
متن کاملCALCULATION OF NON LIFTING POTENTIAL FLOW USING DESINGULARIZED CAUCHY\'S FORMULA
This paper discusses the disturbance velocity and potential as well as the total velocity formulation for non lifting potential flow problem. The problem is derived based on the Cauchy method formulation. The adding and subtracting back technique is used to desingularize the integral equations. The desingularized boundary integral equations are then discretized. The discretized equations can be...
متن کاملApplication of Boundera Element Method (Bem) to Two-Dimensional Poisson's Eqation
BEM can be used to solve Poisson's equation if the right hand side of the equation is constant because it can easily be transformed to an equivalent Laplace equation. However, if the right hand side is not constant, then such a treatment is impossible and part of the equation can not be transformed over the boundary, hence, the whole domain has to be discretized. Although this takes away impor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014